Downloading...
 
product-image
 

3.5-14V 1A 1ch Buck converter_BD8312HFN

1.0A/1.5MHz同步整流降压型开关稳压器BD8312HFN可以从4个电池、2个/3个锂电池等,或者从5V/12V固定电源降压获得1.2V/1.8V/3.3V/5V等输出电压。此IC的工作频率高达1.5MHz,从而可以使用小型化的外接线圈/电容器;它还内置有耐15V的同步整流SW,内置有灵活性高的相位补偿系统,能够按宽范围的外部常数简便地构成极小的电源。

* 本产品是标准级的产品。本产品不建议使用的车载设备。
型号
Status
封装
包装数量
最小独立包装数量
包装形态
RoHS
BD8312HFN-TR 供应中 HSON8 3000 3000 Taping Yes
 
特性:
Grade Standard
ch 1
Integrated FET / Controller Integrated FET
Buck / Boost / Buck-Boost / Inverting Buck
Synchronous / Nonsynchronous Synchronous
Vin1(Min.)[V] 3.5
Vin1(Max.)[V] 14.0
Vout1(Min.)[V] 1.2
Vout1(Max.)[V] 12.0
Iout1(Max.)[A] 1.0
SW frequency(Max.)[MHz] 1.5
Light Load mode No
EN Yes
PGOOD No
Operating Temperature (Min.)[°C] -25
Operating Temperature (Max.)[°C] 85
特点:
  • ・输入输出电源范围 3.5 to 14V
    ・内置2个额定电流为1.0A的同步整流FET
    ・振荡频率1.5MHz工作
    ・内置误差放大器输入输出间的相位补偿元件
    ・内置软启动电路/计时器锁式短路保护电路
    ・HSON8封装(2.9mm×3mm、0.65mm pitch)
 
 
相关产品
相关新产品/产品更新电源管理
PART NUMBER Product Name Package Datasheet Distribution Inventory
BD9S300MUF-C 2.7V to 5.5V Input, 3A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   咨询
BD9E104FJ 7.0 V to 26.0 V Input, 1 A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   咨询
BD9V101MUF-LB 16V to 60V, 1A 1ch 2.1MHz Synchronous Buck Converter Integrated FET VQFN24FV4040   购买
BD70522GUL Nano Energy™ - Ultra Low Iq Buck Converter For Low Power Applications VCSP50L1C   购买
BD9E103FJ 7V to 28V Input, 1.5A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   购买
BD9S400MUF-C 2.7V to 5.5V Input, 4A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   购买
New Products:
 
 
技术信息
Capacitor Calculation for Buck converter IC

This application note explains the calculation of external capacitor value for buck converter IC circuit.

Inductor Calculation for Buck converter IC

This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator IC circuits.

Resistor Value Table to set Output Voltage of Buck Converter IC

This Application Note offers reference table to easily set resistor values for output voltage with various internal reference voltages VREF.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

PCB Layout Techniques of Buck Converter

Major problems that arise from in appropriate layout may cause increase in noise superposed by output and switching signal, the deterioration of regulator, and also lack of stability...

The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit

Using unmatched MLCC may not obtain required target characteristics for power supply circuit and may cause abnormal operation. This application note explains the important points while using MLCC.

Calculation of Power Loss (Synchronous)

This application note describes how to obtain the power loss required to calculate the temperature of a semiconductor device. Temperature control is important to ensuring product reliability.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

Considerations for Power Inductors Used for Buck Converters

This application note explains the features and things to consider when shopping for power inductors.

Snubber Circuit for Buck Converter IC

In buck converter ICs, many high-frequency noises are generated at switch nodes. A snubber circuit provides one way of eliminating such harmonic noise. This application note explains how to set up the RC snubber circuits.

Efficiency of Buck Converter

This application note explains power loss factors and methods for calculating them. It also explains how the relative importance of power loss factors depends on the specifications of the switching power source.

Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)

This application note introduces a method for easily measuring the phase margin with a Frequency Response Analyzer (FRA) made by NF Corporation.