Downloading...
 
product-image
 

3.0-20V 6A 1ch Synchronous Buck converter_BD95500MUV

BD95500MUV是以大电流(最大6A)实现从宽输入电压范围(3.0~20V)到低输出电压(0.7V~5.0V)的开关稳压器。通过使用N-MOSFET开关晶体管能够实现高效率同步整流开关稳压器。通过采用ROHM独创的H3Reg™控制模式,能够实现业界最快的过渡响应特性。另外,为了改善轻负载时的效率采用SLLM™(Simple Light Load Mode),对于宽范围负载均可实现高效率。具有软起动功能、频率可变功能、带定时锁存器的输出短路保护电路功能、输出电压过电压保护功能、Power GOOD功能,最适于作为各种装置的开关电源使用。

* 本产品是标准级的产品。本产品不建议使用的车载设备。
型号
Status
封装
包装数量
最小独立包装数量
包装形态
RoHS
BD95500MUV-E2 供应中 VQFN040V6060 2000 2000 Taping Yes
 
特性:
Grade Standard
ch 1
Integrated FET / Controller Integrated FET
Buck / Boost / Buck-Boost / Inverting Buck
Synchronous / Nonsynchronous Synchronous
Vin1(Min.)[V] 3.0
Vin1(Max.)[V] 20.0
Vout1(Min.)[V] 0.7
Vout1(Max.)[V] 5.0
Iout1(Max.)[A] 6.0
SW frequency(Max.)[MHz] 0.6
Light Load mode Yes
EN Yes
PGOOD Yes
Operating Temperature (Min.)[°C] -10
Operating Temperature (Max.)[°C] 100
特点:
  • ・内置低导通电阻 N-MOSFET(TYP. 50mΩ)
    ・内置H3Reg™ DC/DC转换器控制器
    ・可以选择轻负载模式(SLLM)、连续模式
    ・内置过热、低输入、过电流、输出过电压、输出减电压的保护电路
    ・采用软启动功能,减轻启动时的浪涌电流
    ・可以设定频率 (f=200kHz~600kHz)
    ・内置输出放电功能
    ・内置亮度动态控制功能
    ・内置Bootstrap用途的二极管
    ・内置power good功能
 
 
相关产品
相关新产品/产品更新电源管理
PART NUMBER Product Name Package Datasheet Distribution Inventory
BD9S300MUF-C 2.7V to 5.5V Input, 3A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   咨询
BD9E104FJ 7.0 V to 26.0 V Input, 1 A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   咨询
BD9V101MUF-LB 16V to 60V, 1A 1ch 2.1MHz Synchronous Buck Converter Integrated FET VQFN24FV4040   购买
BD70522GUL Nano Energy™ - Ultra Low Iq Buck Converter For Low Power Applications VCSP50L1C   购买
BD9E103FJ 7V to 28V Input, 1.5A Integrated MOSFET Single Synchronous Buck DC/DC Converter SOP-J8   购买
BD9S400MUF-C 2.7V to 5.5V Input, 4A Integrated MOSFET Single Synchronous Buck DC/DC Converter For Automotive VQFN16FV3030   购买
New Products:
 
 
技术信息
Capacitor Calculation for Buck converter IC

This application note explains the calculation of external capacitor value for buck converter IC circuit.

Inductor Calculation for Buck converter IC

This application note covers the steps required in choosing the inductor and to calculate the value used in buck regulator IC circuits.

Resistor Value Table to set Output Voltage of Buck Converter IC

This Application Note offers reference table to easily set resistor values for output voltage with various internal reference voltages VREF.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

PCB Layout Techniques of Buck Converter

Major problems that arise from in appropriate layout may cause increase in noise superposed by output and switching signal, the deterioration of regulator, and also lack of stability...

The Important Points of Multi-layer Ceramic Capacitor Used in Buck Converter circuit

Using unmatched MLCC may not obtain required target characteristics for power supply circuit and may cause abnormal operation. This application note explains the important points while using MLCC.

Calculation of Power Loss (Synchronous)

This application note describes how to obtain the power loss required to calculate the temperature of a semiconductor device. Temperature control is important to ensuring product reliability.

Thermal Resistance

The definition and how to use thermal resistance and thermal characterization parameter of packages for ROHM’s integrated circuit are described in this application note.

Considerations for Power Inductors Used for Buck Converters

This application note explains the features and things to consider when shopping for power inductors.

Snubber Circuit for Buck Converter IC

In buck converter ICs, many high-frequency noises are generated at switch nodes. A snubber circuit provides one way of eliminating such harmonic noise. This application note explains how to set up the RC snubber circuits.

Efficiency of Buck Converter

This application note explains power loss factors and methods for calculating them. It also explains how the relative importance of power loss factors depends on the specifications of the switching power source.

Measurement Method for Phase Margin with Frequency Response Analyzer (FRA)

This application note introduces a method for easily measuring the phase margin with a Frequency Response Analyzer (FRA) made by NF Corporation.